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LATTICE BOLTZMANN EQUATION ON A 2D RECTANGULAR GRID

M'HAMEDBOUZIDI*,DOMINIQUED'HUMIERESt, PIERRE LALLEMAND_, AND LI-SH] LUO§

Abstract. We construct a multi-relaxation lattice Boltzmann model on a two-dimensional rectangular

grid. The model is partly inspired by a previous work of Koelman to construct a lattice BGK model on a

two-dimensional rectangular grid. The linearized dispersion equation is analyzed to obtain the constraints

on the isotropy of the transport coefficients and Galilean invariance for various wave propagations in the

model. The linear stability of the model is also studied. The model is numerically tested for three cases: (a)

a vortex moving with a constant velocity on a mesh with periodic boundary conditions; (b) Poiseuille flow

with an arbitrary inclined angle with respect to the lattice orientation; and (c) a cylinder asymmetrically

placed in a channel. The numerical results of these tests are compared with either analytic solutions or the

results obtained by other methods. Satisfactory results are obtained for the numerical simulations.

Key words, generalized lattice Boltzmann equation, rectangular meshes, stability analysis, dispersion

equation, Taylor vortex, Poiseuille flow, flow past a cylinder in channel

Subject classification. Fluid Mechanics

1. Introduction. Historically originating from the lattice gas automata (LGA) introduced by Frisch,

Hasslacher, and Pomeau [3], the lattice Boltzmann equation (LBE) has recently become an alternative

method for computational fluid dynamics. The essential ingredients in any lattice Boltzmann models which

are required to be completely specified are: (i) a discrete lattice space on which fluid particles reside; (ii) a

set of discrete velocities (often going from one node to its nearest neighbors) to represent particle advection;

and (iii) a set of rules for the redistribution of particles residing on a node to mimic collision processes in

a real fluid. Fluid-boundary interactions are usually approximated by simple reflections of the particles by

solid interfaces.

In a hydrodynamic simulation by using the lattice Boltzmann equation, one solves the evolution equations

of the distribution functions of fictitious fluid particles colliding and moving synchronously on a highly

symmetric lattice space. The highly symmetric lattice space is a result of the discretization of particle

velocity space and the condition for synchronous motions. That is, the discretizations of time and particle

phase space are coherently coupled together. This makes the evolution of the lattice Boltzmann equation

very simple -- it consists in only two steps: collision and advection. One immediate limitation of the

LBE method is due to its use of highly symmetric regular lattice mesh, which are usually triangular or

square lattices in two dimensions and cubic in three dimensions. Obviously this is a serious obstacle to its

applications in many areas of computational fluid dynamics. To deal with complex computational domains,

various proposals have been made to use grids that are better suited to fit boundaries or to adapt meshes

according to the physics of the system.
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It has been shown recently that the lattice Boltzmann equation is indeed a special finite difference

form of the continuous Boltzmann equation with some drastic approximations tailored for hydrodynamic

simulations [4, 5, 7]. This makes the lattice Boltzmann method more amenable to incorporate body-fitted

meshes [8, 9] or grid refinement techniques [10]. In most cases the regular lattice mesh is abandoned by

decoupling the spatial-temporal discretizations and the discrete velocity set, so that interpolations can be

used in addition to the advection oil a non-regular or non-uniform mesh. However, interpolations introduce

additional numerical viscosities and other artifacts into the lattice Boltzmann method [11]. Therefore, it is

highly desirable to construct lattice Boltzmann models with arbitrary mesh and free of interpolations [2, 12].

In this paper we shall consider a two dimensional model on a rectangular grid with an aspect ratio

of a = _fu/_, where 0 < a <_ 1. The model is inspired in part by a previous work of Koelman [2] who

proposed a general scheme to construct lattice BGK models with given discrete velocity sets based on a low

Mach number expansion of the Maxwellian equilibrium distribution function. Conservation and symmetry

constraints are imposed to fix the parameters in the equilibrium distribution function. Koelman's model is

essentially a variation of the lattice BGK model [13, 14]. As we shall show, the transport coefficients of this

model are generally anisotropic when a ¢ 1 [15].

We use the generalized lattice Boltzmann equation with multiple relaxation times due to d'Humi_res [1],

instead of the standard lattice BGK model [13, 14]. The generalized LBE model has the freedom of multiple

relaxations which can be independent or coupled together. This allows one to optimize the overall properties

of the model through suitable compensation of inadequate behaviors. We shall study the time evolution

of plane waves by analyzing the linearized dispersion equation of the model [11]. This analysis allows us

to obtain the conditions under which the model can be used to sinmlate the Navier-Stokes equation, i.e.,

the model is Galilean invariant and isotropic up to a certain order in wave-number k. We show that severe

stability constraints are due to Galilean invariance and isotropy of transport coefficients. This demonstrates

the difficulty in the endeavor of constructing a lattice Boltzmann model with arbitrary grid. Simulations of

non-trivial cases are presented to demonstrate the qualities and defects of the model.

We organize the paper as follows. Section 2 describes the proposed model on a rectangular grid. Section 3

shows a detailed analysis of the dispersion equation. The wave-number dependence of Galilean coefficient and

attenuation coefficients are computed explicitly to obtain the conditions under which the model is Galilean

invariant and isotropic. Section 4 provides examples of numerical simulations using the proposed model: (a)

a vortex moving with a uniform velocity in a periodic system; (b) Poiseuille flow with the boundaries along

arbitrary direction with respect to the underlying lattice; and (c) flow past a cylinder asymmetrically placed

in a channel. Section 5 concludes the paper.

2. Definition of the model. We consider a two-dimensional LBE model with nine discrete velocities

(the D2Q9 model) on a rectangular grid of dimensions 1 and a. (In what follows all quantities are given in

non-dimensional units, normalized by the lattice unit 5x.) In the advection step of the lattice Boltzmann

equation, particles move from one node of the grid to one of its neighbors as illustrated in Fig. 1. The

discrete velocities are given by

(0, 0), _ =0,
eo = (cos[(a - 1)7r/2], a sin[(a - 1)7r/2]), a = 1-4, (2.1)

(cos[(2c_ - 9)7r/4], a sin[(2c_ - 9)rr/4])v_, a = 5-8,



wherethe durationof the timestep5t is assumed to be unity. At any time t,_, the LBE fluid is then

characterized by the populations of the nine velocities at each node of the computational domain

If(rj, tn)) - (Yo(rj, tn), fl(rj, tn),-'., fs(rj, tn)) T, (2.2)

where T is the transpose operator. Here upon the Dirac notation of bra, ('1, and ket, I'), vectors is used to

denote row column and row vectors, respectively. The time evolution of the state of the fluid follows the

general equation

If(rj + e_, t, + 1)) = If(rj, tn)) + Ift(f(rj, t_))), (2.3)

where collisions are symbolically represented by the operator ft.
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FIG. 1. Discrete velocities of the nine-velocity model on a rectangular grid. The aspect ratio of the rectangle is 5_/5_ = a.

We shall use the generalized lattice Boltzmann equation introduced by d'Humi_res [1], in which the

collision process is executed in moment space l_. The mapping between moment space and discrete velocity

space V spanned by {e_} is one-to-one and defined by the linear transformation M which maps a vector If/

in V to a vector I]) in M, i.e.,

I]} = Mlf), and If) = M-1I]) • (2.4)

To reflect the underlying symmetries appearing in both the Chapman-Enskog expansion and the dispersion

equation, M is constructed as the following

((ml[ 1 1 1 1 1 1 1 1 1 '_

(m2[ I --2_pl _92 _:93 q_92 _93 _1 _1 _1 q_91

(m311 4 -2 -2 -2 -2 1 1 1 1

(m4[ ! 0 1 0 -1 0 1 -1 -1 1

(m5[ [ = 0 -2 0 2 0 1 -1 -1 1

(m61 [ 0 0 a 0 -a a a -a -a

(mT[ [ 0 0 --2a 0 2a a a --a --a

<ms[[ --2¢24 _5 _6 _5 _6 _4 _4 _4 _4

<mgrI 0 0 0 0 0 a -a )

= (]ml}, Ira2), Ira3), Ira4), fro5), Im6), linT), Ires), ling)) r ,

M (2.5)

where _1 = a 2 q- 1, _2 = 1 - 2a 2, _3 = a2 - 2, _4 = a 2 - 1, _2_= a2 + 2, and _;6 = -(1 + 2a2).

The components of the row vector (mzl in matrix M are polynomials of the x and y components of the

velocities {e_}, e_,_ and e_,u. The vectors (rnz_l, _ = 1, 2, -.- , 9, are orthogonalized by the Gram-Schmidt



procedureinacarefullyconsideredorder.Thefirstthreeorthogonalvectorscorrespondto themass,x- and

y-momentum modes: (ml] = (][e_[[°l, (m41 = (e_,_l, and (m61 = (e_,_]. The above expressions prescribe the

components of (ml I, (m41, and (zn61. These three vectors span the hydrodynamic subspace of tile eigen-space

of the collision operator for a two-dimensional athermal LBE model. The remaining six vectors span tile

kinetic subspace. The vector (zn21 = (311eall 2 - 2(1 + a2)lleall°l is constructed by orthogonalizing tile energy

mode (lleall2]. Similarly, vectors (rn51 and (mTI are respectively built upon (ea,_lle_ll21 and (eo,_Ne_H21;

(ms l is constructed upon {e_,z 2- e_,y I and (mgl = (e_,_e_,u]; and finally (m3t is obtained from (]le,_lt'll. By

means of their construction, the row vectors in M are mutually orthogonal, but the), are not normalized,

their norms being chosen to simplify algebraic manipulations. When a = 1, M reduces to that for the D2Q9

model on a square grid with a different normalization of IP_*) [11]. Therefore the proposed model can be

considered as a generalization of the model on a square lattice. It should be noted that when a # 1. there

are three nonzero (kinetic) energy levels in the model which introduce additional degrees of freedom into

tile model and extra care nmst be taken in the construction of (m21, (msl, and (m3], i.e., they must be

orthogonalized with the Gram-Schmidt procedure in the particular order of (m21, (ms I, and (m31.

It is interesting to note that the moments (m,3]f) have a physical interpretation. The matrix M so

constructed in the above naturally leads to the moment vector in moment space M as the following:

If) = (P, e, E, j_, q._, j_, qy, Px_, Pzu) "r, (2.6)

where p is the density, e is related to the kinetic energy, _ is related to the kinetic energy squared for a = 1

(but has no obvious physical meaning when a _ 1), jx and jy are x and y components of the momentum

density, q_ and qu are proportional to the x and y components of the energy flux, and pxx and Pxy are

proportional to the diagonal and off-diagonal components of the viscous stress tensor.

For the collision process, we propose to use the following equilibrium distribution functions of the

(nonconserved) moments, which depend only on the conserved moments, i.e., p, and j = (ix, jy):

e (_q) = 2(3c 2 - 1 - a2)p+ 3(j 2 + j_), (2.7a)
P

1

e (eq)= _O_3p , (2.7b)

q(eq) 1 .

z = -_cl.lx, (2.7c)

q_eq) 1 .= _c23y, (2.7d)

3 (a2j_-12)p(_q)_,__ (a 2_a-_- 1) [3(a 2 + 1)c2_ _ 2a2] P + P _-2.1u , (2.7e)

1
P(euq) = -J_Ju, (2.7f)

P

where the coupling coefficient between p(eq) and p (which vanishes in the standard D2Q9 LBE model) is

introduced to obtain the isotropy of the sound speed. The values of the coupling constants (o_3, el, and c2)

in the above equilibria are obtained by optimizing isotropy and and stability of the model [11]. It should be

noted that the energy is not considered as a conserved quantity here because the model is athermal. (The

model does not possess sufficient degrees of freedom to accommodate the dynamics of locally isotropic heat

transport).

In what follows the idea of the "incompressible" LBE [6] is applied to the above equilibria so that p

is replaced by a constant P0 in the denominators of equations (2.7a), (2.7e), and (2.7f). This choice allows



for bettercomparisonwith otherincompressiblesimulationsandsimpleralgebrawhileretainingcorrect
acoustics.

Thecollisionprocessismodeledbythefollowingrelaxationequations

,]') : I]) - s [,]) - I](e_))], (2.8)

where l-f*) denotes the post-collision state, and S is the diagonal relaxation matrix

S = diag(0, s2, s3, 0, ss, 0, sT, Ss, sg). (2.9)

The model reduces to the usual lattice BGK model if all the relaxation parameters are set to be a single

relaxation time _- (and a = 1), i.e., so = 1/T. It should be stressed that the relaxation parameters are not

independent, as shown in the next section. The constraints of isotropy lead to the coupling between these

relaxation parameters [11]. Obviously, the usual lattice BGK model does not possess the freedom for such

couplings, therefore it would not work on a rectangular grid.

3. Analysis of linearized dispersion equation. The analysis presented in what follows is similar

to that presented in Ref. [11] where the goal of the work was to determine the stability conditions for the

coupling coefficients a2 and a3, and the constraints on the relaxation parameters so.

We consider a system of size Nx x Ny with periodic boundary conditions and look for small amplitude

solutions in the presence of a uniform flow [for given values of p and V = (t_, V_) = J/p]. For a wave vector

k in the reciprocal space of the computational domain, we search for solutions

f_(r,t) _ exp(-ik.r + zt). (3.1)

To first order in k, we have the following linearized dispersion equation:

det(K (1) + M-ICM - zl) = 0, (3.2)

where I is the identity operator, K(U is the linearized advection operator which is a diagonal matrix

K (1) = diag(0, ik.el .... , ik. es), (3.3)

and C is the linearized collision operator

0 0 0 0 0 0 0 0 0

ot4s2 -s2 0 6Vxs2 0 6V_s2 0 0 0

o_383/4 0 -s3 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

C = 0 0 0 c185/2 -85 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 c2s7/2 -sT 0 0
a5ss 0 0 6a2_zSs 0 -6Vyss/a 2 0 -ss 0

0 0 0 V_s9 0 t_s9 0 0 -s9 )

(3.4)

where

a4 = 213c,_ - (1 + a2)],

(1- a2) [2a2_ 3c_(.2 + 1)]_s - _:+

(3.5a)

(3.55)



Tile linearizeddispersionequation(3.2)canbesolvedbyperturbationtechniquein powerseriesof k [11].

To ensure isotropy and Galilean invariance in the limit of k _ 0, we need to solve the linearized dispersion

equation up to k 2.

In the first order of k, three solutions are obtained: one corresponds to transverse excitations which are

convected with the uniform speed of the fluid k • V/k, whereas the other two are acoustic waves with phase

velocity +c8, where the speed of sound c8 can be chosen within limits that is deferred to later discussion.

The sound waves also have the correct dependence on the applied uniform velocity V of the fluid up to the

first order in I', i.e., cs _ cs ± l'cos0, where 0 is the angle between k and V. The nonlinear terms in the

equilibria of Eqs. (2.7a) -- (2.7f) provide the correct Galilean coefficients for both transverse and longitudinal

waves.

In the second order (in k) of the solutions of tile dispersion equation the constraints oil the isotropy of

the transport coefficients for the hydrodynamic modes lead to

c2 + 4(1 - a 2)

cl = a2 (3.6)

and the following relationships between the relaxation parameters

1 2(4+e2)[(12c2s-c2)(l+a_)-2(5J + 2)] 1
:- = --, (3.7a)
s2 (l+a2)(t+c2-3a'2)(c2+lO-12c_)+6[a4(c2-2)-3(a2-1)] s9

1 2(4+c_)[(12c2-c2)(l+a2)-2(3a4+5a2+5)] 1
-:-- = --, (3.7b)
Ss (l+a2)(l+c2-3a2)(c2+lO-12c])+6[a4(c2-2)-3(a2-1)] s9

where 1/_a - (1/sc_ - 1/2). The coupling between s2 and s9 is required only when a _ 1. The kinematic

shear viscosity t, and the kinematic bulk viscosity _ are

4+c2 (1 _) (3.8a)-- 6 -- '

,= _2(7+3a2+c2_12c_)(1__) . (3.8b)

For a given a, the speed of sound and c2 must be chosen such that the shear and bulk viscosities are positive

and the Eqs. (3.7a) and (3.7b) lead to positive values for s2 and Ss.

The values of c_ and c2 which optimize the isotropy and stability of the model, depending on the grid

aspect ratio a, are determined by the linear analysis of the model [11]. In the case of square grid, i.e.,

2 1/3 and c2 -2. This result coincides with the one given in Ref. [11] and thea = 1, we have found c_ = =

relationship between ss and s9 given by Eq. (3.7b), and the shear and bulk viscosities given by Eqs. (3.8a)

and (3.8b) all reduces to the previous results for a square lattice where cl = -2 [see Eqs. (40), (41), (42),

and (43) in Ref. [11] for c8, sg(ss), v, and _, respectively]. However, the coupling between s2 and s_ is unique

to the model on a rectangular grid. This coupling is due to the dependence of p(_q) on p, which in turn leads

the term asSs in the linearized collision operator C in Eq. (3.4). Finally note that a3 has little influence and

is set to be equal to -2.

The linearized dispersion equation can be solved numerically for any value of k to determine the linear

stability of the system by computing the rate of growth of spatially periodic excitations superimposed to

a uniform flow of constant velocity V, as previously shown in the case of a square grid [11]. Through this

analysis it is found that the present model is much less stable than the square one, i.e., the stable region in

parameter space of V and s_ is much smaller than that for the model with a square lattice. For instance,

when a = 1/2, a stability condition is that V <_ 0.05, whereas for the model with a square lattice (a = 1), the



samestabilityconditionisthat V _< 0.20. One reason for this is that in general the sound speed c8 decreases

with the aspect ratio a; for instance, when a = 1/2 the optimal speed of sound is about 0.377. which is

different from the usual cs = 1/v_ ,_ 0.577 on a square lattice. Therefore, tile local velocity magnitude

must be decreased accordingly to keep tile local Mach in check so that the low Mach number approximation

remains valid. This means that the present model will have limited ability to simulate flows even at moderate

Reynolds numbers. In addition when using a combination of rectangular and square grids (the simplest case

of grid refinement in one direction) in the situation where acoustic propagation is important, it will not be

possible to choose an optimal value of the sound speed for the two different grids.

V*,_ would like to note that, although there is no simple interpretation of the instability of the LBE

models due to the presence of a uniform velocity V, information on the instability can be obtained by

analyzing the velocity dependence of the attenuation of sound waves using the linearized dispersion equation

[11].

Let us consider the case where the uniform velocity is parallel to the wave vector k with a polar angle

0 (between k and x-axis). For small values of k and the particular choice of c2

c2 = (a 2 - 3), (3.9)

we have the following results. The transverse mode has phase velocity v± = V and its attenuation is given

by

"y±=k2(1-_) ((1+a2) V2{1 - 9(1-a2) 2sin220 (3.10)
211-l_a2-+--_--_l_a2)c2])/ "

For the longitudinal modes, we obtain as phase velocity vii = +V/-_ 2 + V 2 and attenuation coefficient _ll =

(% + _,±)/2, with (to the first order in V)

3,b=k2(1 _) (1+a2--3c: V,_2 - 3 + cs[1 + 8a 2 + a4 - 12(1 + a2)c_] {(1 + a2)(7a 2 + 36c4s)

2 +12(1-a2)c2, cos_012+(1 a2)(2 3coQ0)]}). (3.11)-3 (7 + 12a 2 + 3a 4) c, - -

Contrary to the case of square grid, it is not possible in general with a given value of a 7t 1 to find a value of

c_ for which the linear dependence of the attenuation of acoustic waves on V can be eliminated (for a = 1,

2 1/3). This is a possible cause of instability in the model.this can be accomplished by setting c, =

4. Simulations. We use the two-dimensional multi-relaxation LBE model on either a square grid or

a rectangular grid for the following simulations. The central routine (collision and advection) is quite close

to that for the standard square LBE and leads to similar performances (using a workstation with a 500

MHz EV6 processor, the overall computation time per node and per time step is in the range 0.2 to 0.4

microsecond depending whether the cache is large enough or not).

4.1. a vortex traveling with a constant velocity. To test the ability of the present LBE scheme to

simulate a viscous flow, we consider the particular case of a simple vortex superimposed to a uniform flow

of velocity V. We take as initial condition for the flow

uo(r, t = O) = V + (Yo - Y, x- xo)woexp[-(r - r0)2/R2]. (4.1)

where ro = (x0, Y0) is the initial position of the vortex center, and coo and R characterize respectively the

amplitude and the extent of the vortex. The evolution of the corresponding macroscopic flow is fairly simple:



thecenterofthevortextravelswith thevelocityV and the maximum value of the vorticity (at the center

ro + Vt) decays in time as

R4 _d0 _0

Wma×(t) - (R 2 + 4ut) 2 - (1 + 4t*) 2 ' (4.2)

where t* = ut/R 2 is the dimensionless time.

v

1.0

0.5

' ..... I F I ' '

I i I i , , J , J , _ _ L i ,

0.0 0.1 0.2 0.3

t*=vot ff R _

FIG. 2. LBE simulation of a moving vortex. Decay of the vorticity maximum. The grid aspect ration a = 1/2. Symbol +

and × are simulation results for V = 0 and V = 0.05, respectively. The solid lines are fitting of the data according to Eq. (4.2)

with the viscosity of value v = 0.9876u0 and v = 0.8966uo, respectively, where uo is given by Eq. (3.8a).

The system size is Nx x N v = 109 x 109, with a grid aspect ratio a = 1/2. The size of the vortex is

R = 6. Values of other parameters are: a2 = -3.5, c_3 = 2.0, c2 = -2.9, and ss = 1.8, i.e., u = 0.01018

according to Eq. (3.8a). The results obtained by the LBE simulations with various conditions agree very well

with the analytic solution of the flow for V = 0. However when V increases there are departures from the

simple result of Eq. (4.2) due to the dependence of the transport coefficients and g-factor on V, as discussed

for the square grid in Ref. [11]. An example of such behavior is demonstrated in Fig. 2. Figure 2 shows

two LBE simulation results of _ma_ as a function of dimensionless time t* = vt/R 2, with V = (0, 0) and

V = (0.05, 0). Equation (4.2) is used to fit the data to obtain the viscosity. The results are v = 0.9876u0

and u = 0.8966v0 for I_ = 0 and V_ = 0.05, respectively, where v0 is given by Eq. (3.8a). There are two

factors that attribute to the correction in the viscosity: the wave-number k-dependence and V-dependence

of the transport coefficients [11]. The same simulations are performed on a square grid and the results are:

v = 0.9866v0 and p = 0.8745u0 for $:_ = 0 and _ = 0.05, respectively. It should be noted that in the LBE

simulations, initial conditions include not only the conserved quantities such as the density and velocity

fields, but also all the nonconserved quantities such as fluxes and the stress, which can be obtained from the

initial velocity field through a Chapman-Enskog analysis of the model.

4.2. Poiseuille flow with arbitrarily inclined walls. The second test is the two-dimensional Poiseuille

flow with arbitrarily inclined walls. This situation allows us to test the no-slip boundary conditions in the

LBE model. We consider a system of size _N_ x N u with periodic boundary conditions. The boundaries of

the channel are placed with an arbitrary inclined angle 0 with respect to x-axis, as illustrated in Fig. 3.



Theno-slipboundaryconditionsusedhereforthechannelwallsaretheinterpolatedbounce-backboundary
conditionsproposedinRef.[16].Theinterpolatedbounce-backboundaryconditions combine interpolation

and bounce-back schemes to deal with boundaries which are off the lattice points.

<
<
<
>

f
-.....
f

f

f

FIG. 3. 2D Poiseuille flow with arbitrary inclined walls. The system size is assumed to be Nz x Nu. The discs are grid

points. The solid lines are the advection lines of the discrete velocities. The dashed lines are the boundaries of the channel.

The width of the channel is Nu. The no-slip boundary conditions are enforced at the intersections the dashed lines and the
thin solid lines.

We first" studied the time evolution of the flow starting at rest, and compared the results obtained by

using the rectangular and square grids. The time evolution of velocity fields of the two systems agree very well

with each other. We also studied the momentum transfer at the boundary. We found an excellent agreement

between its measurements for the square and the rectangular grids, and its expected value: pvLO± I il, where

L is the length of the boundary, and 0±V_I is the normal derivative of the shear velocity with respect to the

wall, computed at the wall.

Note that when we compute the momentum transfer for the rectangular grid, the components of the

usual momentum transfer have to be multiplied by a factor a to account for the surface of the elementary

cell (assuming that all results are in non-dimensional units defined on the square grid). In order to better

understand the origin of this factor, one has to remember that p and j are the mass and momentum densities

(mass and momentum per unit surface), while the momentum transfer has to be computed from momentum:

(momentum density) x (cell surface). Usually a unique regular grid is used and the cell volume can be taken

as unit volume. Here however the surface of the cells is equal to the chosen aspect ratio a once the square

cell has been taken as unit surface. Indeed this remark applies to the next section when computing the drag

and lift coefficients.

4.3. flow past a cylinder asymmetrically placed in a channel. The third test we did was a two-

dimensional flow past a cylinder asymmetrically placed in a channel. This flow has been used as a standard

benchmark test in CFD [17]. The flow configuration is as follows: a cylinder of diameter d is placed in a

channel of width 4.1d and length 22d, the center of the cylinder is asymmetrically (with respect to the center

line of the channel) located at horizontally 2d from the entrance, and vertically 2d from the lower wall of the

channel, as shown in Fig. 4. The boundary condition at the entrance is a Poiseuille profile with average speed

U. The boundary condition at the exit is free exit with a total flux equal to the input flux. The bounce-back

boundary conditions are used for the channel walls, and the interpolated bounce-back boundary conditions



TABLE 4.1

2D ]tow past a cylinder asymmetrically placed in a channel at Re = 100.

a c_ ce .hT_ × N_ St C_ _ C_ _ C_ni" AP

1/yr3 -2 709 x 132 0.3021 3.153 0.926 -1.018 2.501.00

0.85 0.6141 -0.80 709 x 155 0.3018 3.186 0.984 -1.051 2.51

0.80 0.5829 -0.90 709 x 165 0.3020 3.174 0.950 -1.062 2.51

0.75 0.5412 -1.10 709 x 176 0.3018 3.173 0.965 -1.053 2.51

0.70 0.5113 -1.50 709 x 188 0.3007 3.195 1.013 -1.071 2.51

0.65 0.4761 -1.70 709 x 203 0.3009 3.184 0.999 -1.062 2.47

0.60 0.4417 -2.00 709 x 220 0.3009 3.176 1.002 -1.053 2.45

0.55 0.4086 -2.25 709 x 240 0.3015 3.189 1.005 -1.052 2.42

0.50 0.3770 -2.55 709 x 264 0.3007 3.199 1.019 -1.084 2.45

0.45 0.2977 -2.90 709 x 293 0.2992 3.204 1.053 -1.107 2.50

CFD lower bound in Ref. [17] 0.2950 3.22 0.99 -- 2.46

CFD upper bound in Ref. [17] 0.3050 3.24 1.01 -- 2.50

with a second order interpolation [16] are used for the boundary of the cylinder. The Reynolds number for

the flow is

Ud
Re = --.

u

We use the LBE model to simulate the flow at Re = 100 for which there is periodic vortex shedding behind

the cylinder.

q 22d *,

_5 (u, v) = (0, O)

16d

1 5d
flow direction

d

(u, v) = (O, O)

FIG. 4. Configuration of a 2D flow past a cylinder asymmetrically placed in a channel.

The flow was computed on rectangular grids with several different values of the grid aspect ratio a, and

compared to the results with a square grid. The measured quantities are Strouhal number St, maximum drag

C_ a×, maximum lift coefficient C max minimum lift coefficient C rain and the pressure difference Ap. TheL ' L

results are summarized in Table 4.1. Table 4.1 also shows the lower and upper bounds of St, C_ a×, C_ _×, and

Ap, obtained by a number of conventional CFD methods presented in Ref. [17]. Overall the LBE simulation

results with square or rectangular grids agree well with each other, and with the CFD results in Ref. [17].

Figures 5 show the contours of the stream function tb(x, y) and the vorticity w(x, y) of the simulations on

a square grid of size N_ x N_ = 1401 x 308 and on a rectangular grid of size N_ x N_ = 1401 x 616. The

relative L2-norm difference of the two velocity fields is about 2.2 x 10 -4. Note that the aspect ratio for this

particular calculation is slightly different from that shown in figure 4, but this has negligible effect for the

present purpose of comparing results on the square and the rectangular grids.

The relative fluctuation of Strouhal number St is well under 1% and the values of St are well within the

bounds in Ref. [17]. The fluctuation of C_) ax is also under 1% but the values of C_ ax are all slightly lower
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thantheresultsin Ref.[17].ThefluctuationofAP isabout1%andthevaluesofAp agree well with the

results in Ref. [17]. The values of lift coefficient obtained by the LBE simulations have a variation about

+670, which is much greater than the variations in other measured quantities.

I I E ' I I

0 200 400 600 800 1000 1200

FtG. 5. 2D flow past a cylinder asymmetrically placed in a channel at Re = 100. Top and bottom figure show contours of

the stream function W(x, y) and the vorticity _(x, y) of the flow, respectively. The dashed lines are the simulation results on

a square grid of size Nz × Nu = 1401 × 308, and the solid lines are that on a rectangular grid of size Nz × Nu = 1401 × 616.

A possible origin of the discrepancy in the lift coefficients is the following. The LBE method is intrin-

sically a compressible scheme and acoustic waves may be generated by, e.g., initial conditions that do not

include a proper pressure field or the flow itself that generates an oscillating pressure field as is the case

considered here. For a given value of the sound speed and a given choice of the boundary conditions at the

entrance and exit of the channel the frequency of some of the longitudinal acoustic modes can be close to

multiples of tile Strouhal frequency in the flow. This causes resonances between some of the acoustic waves

and the periodic shedding of vortices by the cylinder. The coupling between acoustic waves and vortex shed-

ding indeed affects the hydrodynamic fields, and in turn, various measured quantities. Among the measured

quantities, the lift coefficients are most sensitive to this effect. The mean drag coefficient is also affected but

to a much smaller extent. This problem is of broad interest. However it will be easier to study it with the

model of square grid for which the speed of sound and the bulk viscosity can be chosen in a broader range

than for the model of rectangular grid. A detailed study is beyond the scope of the present work and will

be addressed elsewhere.

5. Conclusion and discussion. In this paper we have successfully proposed a two-dimensional nine-

velocity generalized lattice Boltzmann model with multiple relaxations on a rectangular grid with arbitrary

aspect ratio a = _u/_x. We have numerically validated the model by using the model to simulate several

benchmark problems, and have obtained satisfactory results. In contrast to the previous two-dimensional,

nine-velocity, multi-relaxation model on a square grid [11], the model on a rectangular grid is more prone

to instability, and the admissible maximum value of local velocity magnitude is much less than that in

the model on a square grid. It should also be stressed that, although this work is in part motivated by a

previous work [2], it is realized that the nine-velocity lattice BGK equation cannot possibly work properly
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ona rectangulargrid. Specifically,the latticeBGKequationdoesnot havesufficientdegreesof freedom
to satisfytheconstraintsimposedby isotropyandGalileaninvariance.With ninediscretevelocitiesin
two-dimensions,it isnecessaryto usethemulti-relaxationsto construct an LBE model on a rectangular

grid.

This work is our first attempt to construct a lattice Boltzmann model on an arbitrary unstructured grid.

As discussed in Ref. [12], one difficulty encountered in the LBE model on an unstructured grid is due to

tile fact that Ve_f # e_Vf because the discrete velocity set {e_ } has spatial dependence. In this work, we

found that there are additional issues in the LBE model on an unstructured grid needed to be addressed.

First, we found that tile local grid structure severely affects the local sound speed. If the sound speed

varies spatially depending on local grid structure, then the model is unphysical. Correct acoustic propagation

is an essential part of the lattice Boltzmann method. Secondly, the constraints of isotropy and Galilean

invariance are difficult to satisfy by using the lattice BGK model, as proposed in Ref. [12], unless the discrete

velocity set includes a large number of velocities. Thirdly, the numerical stability is severely affected by the

local grid structure even for uniform structured grid, as we have demonstrated in this work. Stability is of

key importance to an effective lattice Boltzmann algorithm. However, we have not yet developed a method

to systematically improve the stability of the lattice Boltzmann method. We believe that the aforementioned

issues must be resolved before we can construct a lattice Boltzmann model on an arbitrary unstructured

grid.
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